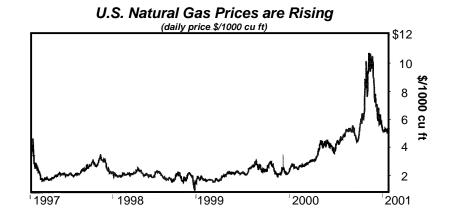
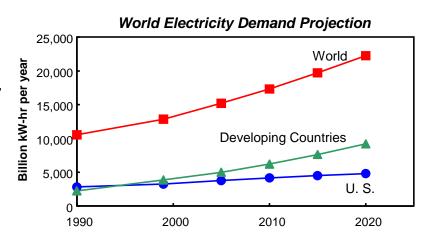


Idaho National Engineering and Environmental Laboratory

The Need for Nuclear Power

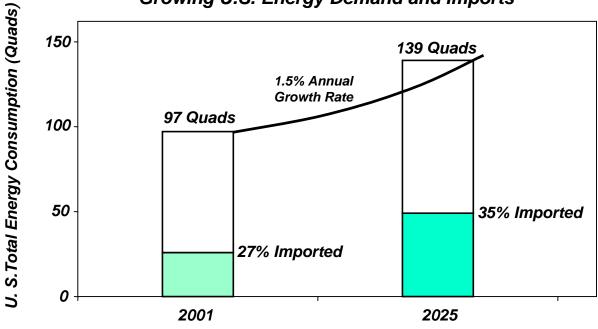
Dr. John M. Ryskamp INEEL


IEEE Power Engineering Society Meeting


April 28, 2003

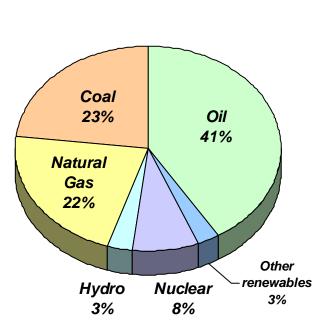
Energy - On Everyone's Mind

- Regional energy shortages
- Increasing natural gas and oil prices
- World electricity demand is rising 2.7%/year
- 2330 GW of new world electrical generating capacity needed by 2020
 - 324 GW in the U.S.
 - 69 GW replacement in the U.S.
- Energy is a critical component of sustained economic growth and improved standard of living
- We desire abundant, affordable, clean energy for world prosperity

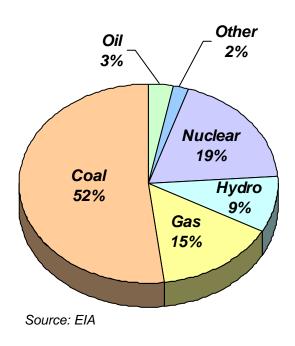


Forecast for U.S. Energy Growth

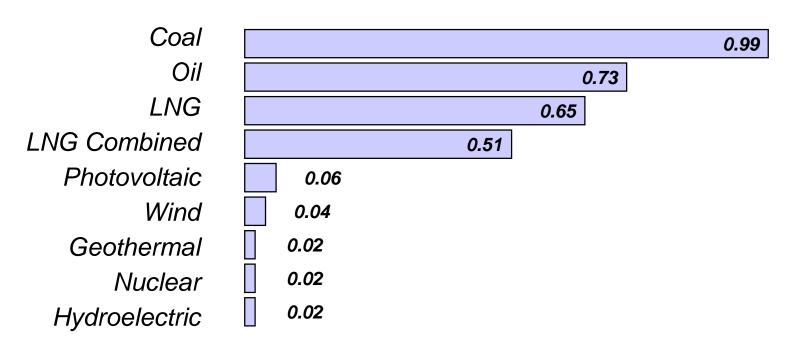
Growing U.S. Energy Demand and Imports



Source: 2003 Annual Energy Outlook

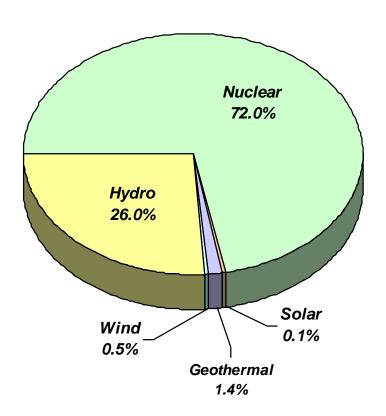

- Annual outlook is 1.5% growth in U.S. energy to 2025
- Most growth is in natural gas and coal
- Imports will increase
- Nuclear can contribute if deployed in the near term

Why Nuclear Energy?... we depend on it today

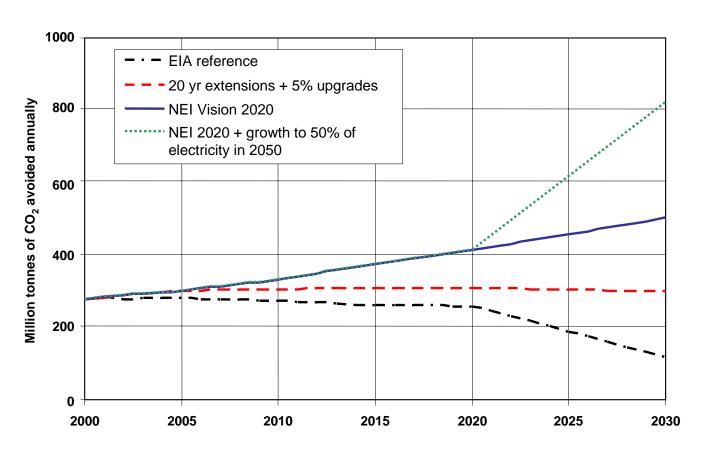

Energy Production

Electricity Production

Comparison of CO₂ Emissions Intensity by Electrical Generating Fuel in Japan* (kg CO₂/kWhr)

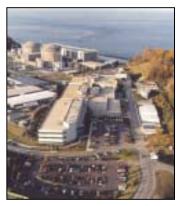

^{*} Total CO₂ emissions from mining, fuel transportation and refining, plant construction, operations, and maintenance. From report of the Central Research Institute of Electric Power Industry, Life Cycle Analysis of Power Generation System (March 1995)

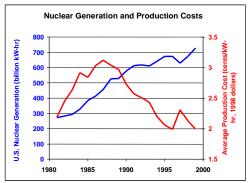
Nuclear Power is Helping Today

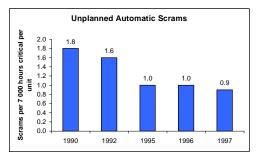

Cleaner air

- Emission-free generating sources supply almost 30 percent of America's electricity
- Nuclear energy provides the greatest share of clean energy – almost three quarters

Net Effect of Nuclear Power on U.S. CO₂ Emissions (million tonnes CO₂ emissions avoided)


Ecosystem Impact Comparison (for 1000 MWe)


Method	Requirement	Land Area (square miles)
Photovoltaic	100 km² @ 10% efficiency	40
Wind	3000 wind turbines	40
Biogas	60,000,000 pigs or 800,000,000 chickens	
Bioalcohol	6,200 km² of sugar beets	2,400
	7,400 km² of potatoes	2,800
	16,100 km² of corn	6,200
	272,000 km² of wheat	104,000
Bio-oil	24,000 km² of rapseed	9,000
Biomass	30,000 km² of wood	12,000
Nuclear	< 1 km ²	1/3



The Nuclear "Paradigm" Has Changed

- Industry has become economically competitive
- Substantial improvement in safety performance
- Growing public acceptance
- "Zero" emissions technology
- Energy security and environmental quality suggest nuclear energy for future growth

Why Nuclear energy?... it is an energy option we cannot ignore

Oil

- U.S. imports 51% of its oil supply
- Vulnerable to supply disruptions and price fluctuations

Natural gas

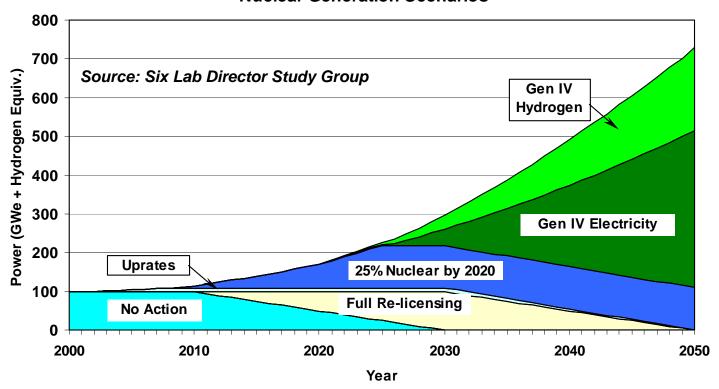
- Today's fuel of choice
- Future price stability?

Coal

- Plentiful but polluting

Renewables

- Capacity to meet demand?
- Still expensive


Nuclear

- Proven technology
- Issues remain

Goals for the U.S. Nuclear Energy Supply

Nuclear Generation Scenarios

By 2050:

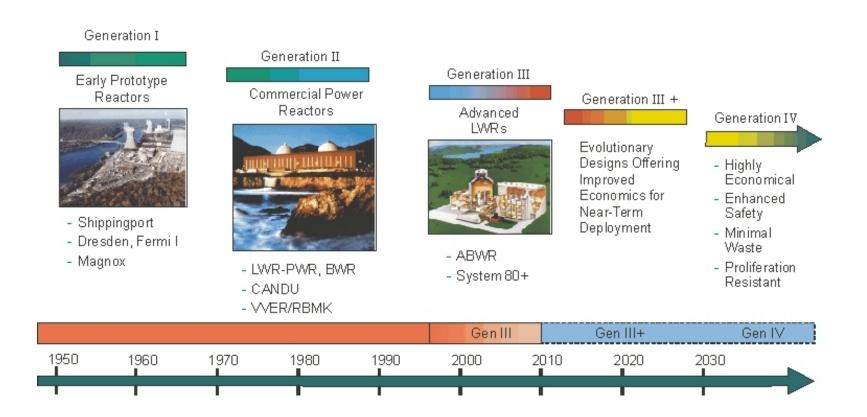
- Half of U.S. electricity production could be nuclear
- One-quarter of U.S. transportation could by nuclear hydrogen

Challenges to the Long-Term Viability of Nuclear Energy

Economics

- Reduced costs (especially capital costs)
- Reduced financial risk (especially licensing/construction time)

Safety and Reliability


- Operations safety
- Protection from core damage (reduced likelihood and severity)
- Eliminate offsite radioactive release potential

Sustainability

- Efficient fuel utilization
- Waste minimization/management
- Nonproliferation

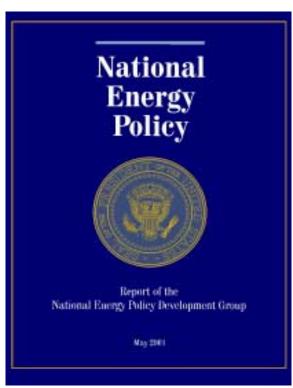
The Generations of Nuclear Energy

Generation IV Definition

Generation IV is the next generation of nuclear energy systems that can be licensed, constructed, and operated in a manner that will provide a competitively priced and reliable supply of energy to the country where such systems are deployed, while addressing nuclear safety, waste, proliferation and public perception concerns.

The National Energy Policy Endorses Nuclear Energy as a Major Component of Future U.S. Energy Supplies

Existing Nuclear Plants

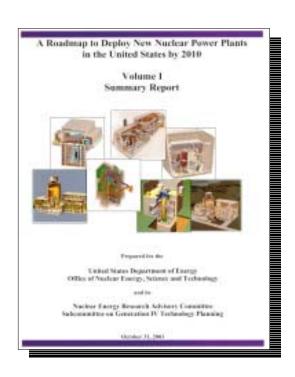

- Expedited NRC licensing of advanced reactors
- Update and relicense nuclear plants
- Nuclear energy's role in improved air quality
- Geologic repository for nuclear waste
- Price-Anderson Act renewal

New Nuclear Plants

- Advanced fuel cycle/pyroprocessing
- Next-generation advanced reactors

Reprocessing

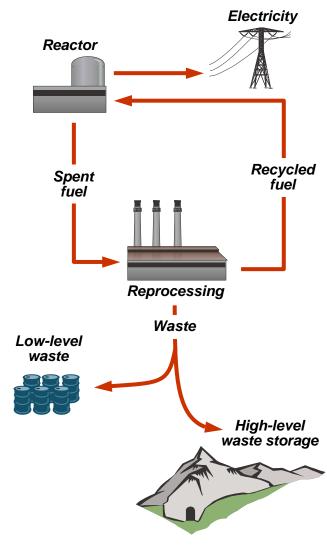
- International collaboration
- Cleaner, more efficient, less waste, more proliferation-resistant


US DOE Nuclear Power 2010 and Generation IV Programs are Addressing Near-Term Regulatory and Long-Term Viability Issues

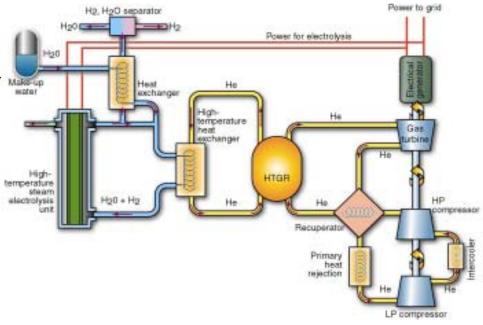
NP-2010 Program

- Eliminate regulatory uncertainties/demonstrate 10CFR52 Process
- Complete design and engineering
- Construct and deploy one light-water, and one gas-cooled reactor by 2010

Generation IV Nuclear Energy Systems Program


- Generation IV International Forum
- Concept screening and Technology Roadmap
- Broad spectrum of advanced system concepts
 - High-temperature, gas-cooled reactor
 - Liquid-metal-cooled reactors and recycle
 - Supercritical-water-cooled reactors

The Sustainable Fuel Cycle of the Future


- Current U.S. "once-through" fuel cycle requires spent-fuel storage and management for thousands of years
- Lack of social/political acceptability of longterm waste storage may require a reexamination of U.S. waste management strategy
- Recycling of spent fuel reduces volume (96%) and lifetime (few hundred years) of disposable waste
- Advanced "fast" reactors can recycle multiple times
 - Burns plutonium and other long-lived materials
 - Extends fuel supplies 100X
- New recycle technology reduces nuclear materials proliferation-concern

High Temperature Nuclear Reactors May Contribute to Hydrogen Production

- Energy security and environmental quality motivate hydrogen as a alternative to oil as a transportation fuel
- Hydrogen demand is already large and growing rapidly
 - Heavy-oil refining
 - Consumes 5% of natural gas for hydrogen production
- Bridge to the hydrogen economy
 - Hydrogen fuel cells
 - Zero-emissions transportation fuel
 - Distributed energy opportunity
 - Large-scale, zero emissions hydrogen production is an enabling technology
- Water is the preferred hydrogen "fuel"
 - Electrolysis using off-peak power
 - High-temperature electrolysis
 - High-temperature thermochemical water splitting

Summary and Implications for the Future

- Economics, operating performance and safety of U.S. nuclear power are excellent
- Nuclear power is already a substantial contributor to reducing CO₂ emissions
- Nuclear power can grow in the future if it can respond to the following challenges:
 - remain economically competitive
 - retain public confidence in safety
 - manage nuclear wastes and spent fuel

 Nuclear power's impact on U.S. energy security and CO₂ emissions reduction can increase substantially with increased electricity production and new missions (hydrogen production for transportation fuel)